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Abstract—  We propose  an SEIR model  for the populations
and an SEI model  for the vector to describe the transmission
dynamics  of  a  four-strain  model  with  both  primary  and
secondary  dengue  infections.  In  order  to  accomplish  this,  we
propose and obtain an analytic solution of a system of 47 coupled
differential equations. This would be the most complete epidemic
model proposed to describe the dengue epidemic.
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I. INTRODUCTION 

Dengue is a viral disease, found in tropical and sub-tropical
regions of the planet where it is estimated that between 2500
and 3000 million people are at risk of contracting the disease
[1]. In fact, since 1998 the World Health Organization (WHO)
has listed dengue as the tenth leading cause of death among all
infectious diseases that are prevalent in the world [2]. 

Dengue  is  transmitted  primarily  by  the  bite  of  infected
female  mosquitoes  Aedes  aegypti,  but  it  also  has  been
associated  with  other  species  such  as  Ae.  albopictus,  Ae.
polynesiensis, and Ae. scutellaris [3]. Dengue has four strains
denoted by Dengue I-IV [1,2]. The most common form is the
classic dengue or dengue fever that can often be caused by one
strain. In addition, severe dengue hemorrhagic fever formerly
associated with a secondary infection is caused by antibody-
dependent enhancement processes [1,2]. 

The first case of dengue ocurred in Australia in 1954 and
similar  outbreaks  were  observed  in  the  Philippines  and
subsequently  spread  to  Vietnam,  Thailand  and  other  Asian
countries  [4].  The first  epidemic of  dengue in  the Americas
occurred in Cuba in 1981 which was caused by an Asian strain
of Dengue serotype-II [5]. 

Due  to  the  lack  of  effective  drugs  and  vaccines  against
dengue fever  there has been a lack of effective programs to
help control the disease, and for this reason, a wide range of
mathematical  models to  describe  and  characterize  the
dynamics of dengue transmission has been developed [6-8].

The classic example is the SIR model which indicates that
there are three significant populations to be examined. They are
the population that  is susceptible to a given disease (S),  the
population  that  is  infected  with  the  disease  (I)  and  the
population that recovers from the disease (R). Aguilar et. al. [9]
described  an  extension  to  numerically  resolve  dengue
epidemics with four strains, employing a SIR model. 

In the case of viruses, the mathematical model must include
the  incubation  or  latency  period  which  occurs  just  before
infection.  In  this  case,  the  model  is  called  the  SEIR  model
where  E  represents  the  population  that  is  exposed  to  the
disease.  In  the  case  of  dengue,  the  exposure  time  is
approximately  8-9  days  before  manifestation  of  the  disease
once it is transmitted by an infected mosquito [10].

Our model proposes an analytic solution of a system of 47
differential  equation  that  describes  the  dynamics  of  dengue
transmission with four strains. In addition we take into account
primary and secondary infections employing the SEIR model
for  the  populations  and  the  SEI  model  for  vector;  it  is  an
extension of the model of Janreung and Chinviriyasit published
in 2014 [11]. We believe this to be the most complete analytical
analysis of the transmission of dengue.

II.  MATHEMATICAL MODEL

The model is initially based on the recent model proposed
by Janreung and Chinviriyasit [11] who resolved a system with
17  differential  equations.   In  this  model  (Fig.  1),  the  host
population  (N)  is  subsequently  subdivided  into  multiple
populations based on the following assumptions:

-The  model  assumes  a  homogeneous  mixture  of  the
populations of both humans (host) and vectors (mosquito) so
that  each  mosquito bite  is  as  likely to  transmit  the  virus  to
humans regardless of the type of the virus.
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Fig. 1. The compartmental model of host-vector population employed in our
model (see the text for the nomenclature). 

-The total  human population at  time t  is  divided into 38
subpopulations. This means that the susceptible population will
be exposed to an infection by one strain denoted by Ei., where
i= 1 to 4 is the index to indicate the four strains. Subsequently,
the  populations  will  become  infected  (denoted  Ii).  The
secondary  infection  occurs  when an  individual  is  reinfected
with  another  strain,  and  in  this  case,  the  population  that  is
exposed to  the second infection  will  be denoted as  Eij.  The
infected population will be identified as Iij (the second index
represents the second infection while the first index represents
the  primary  infection,  with  the  condition  i≠j).  Finally  the
human population that recovered is indicated with R. The total
population (N) will be equal:

N = S+E1+E2+E3+E4+I1+I2+I3+I4+S1+S2+S3+S4+

       E12+E13+E14+E21 +E23+E24+E31+E32+E34+

       E41+E42+E43+I12+I13+I14+I21+I23+I24+I31 +I32+I34+

        I41+I42+I43+R

-The total  mosquito (vector)  population is denoted by M
and is divided into 9 classes. The first is Sv which represents
the mosquito population susceptible to carry the virus. The next
four are the mosquitoes that are exposed to the dengue virus
and are denoted by Evi. The last four, corresponding to infected
mosquitoes, are denoted by Ivi. So

M = Sv+Ev1+Ev2+Ev3+Ev4+Iv1+Iv2+Iv3+Iv4

-  It  was  also  considered  that  the  mosquitoes  that  were
exposed to the four virus types at different times, once infected,
cannot recover as has been already established in the scientific
literature [9,11].

Finally,  we model  the  system with  a  set  of  47  ordinary
differential equations which are written as:

dS
dt

=μ ( N−S )−∑
i=1

4

S
β
N

I vi                   (1)

dEi

dt
=S

β
N

I vi−(σ+μ ) Ei                      (2)

d I i

dt
=σ Ei−( γ+μ ) I i                         (3)

d Si

dt
=γ Ii−S i

β
N
∑
j=1
i ≠ j

4

I vj−μS i                  (4)

d Eij

dt
=Si

β
N

I vj−(σ+μ ) E ij                    (5)

d I ij

dt
=σ E ij−(γ +μ ) I ij                       (6)

dR
dt

=γ∑
j=1
i ≠ j

4

Iij−μR
                      (7)

d Sv

dt
=M−Sv

βv

N (∑i=1

4

Ii+ρ∑
j=1
i ≠ j

4

I ij)−μ Sv (8)

d E vi

dt
=Sv

βv

N (I i+ ρ∑
j=1
i ≠ j

4

I ij)−(σ v+μv ) E vi (9)

d I vi

dt
=σ v Evi− (γ v+μv ) I vi            (10)

where i represent each strain with i= 1 to 4, and ρ is  the rate of
secondary  infections  contributing  to  intensity  of  the  disease
[12].  Of course, the best value of ρ is calculated according to
the  number  of  outbreaks  of  epidemics  observed  in  each
geographical area.
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III. RESULTS

The  epidemiologically  relevant  bioregion  that  is
symbolized with Ω [9,11,12] is given by

Ω={ (S,E1,E2,E3,E4,I1,I2,I3,I4,S1,S2,S3,S4,E12,E13,E14,

          E21,E23,E24,E31,E32,E34,E41,E42,E43,I12, I13,I14,

           I21,I23,I24,I31,I32,I34,I41,I42,I43,R,Sv,Ev1,Ev2,Ev3,Ev4,

                   Iv1,Iv2,Iv3, Iv4 ) ≥ 0  }

The  solution  of  this  system  of  equations  uses  the  same
methodology   as  explained  and  published  by  Janreug  and
Chinviriyasit  [11].  The  solution  of  our  system  of  equations
suggests that there are two points of equilibrium that we call
Point 1 and Point 2. 

Point 1: This point correspond a disease free equilibrium
analogous to that found in [11] equal to:

(S'=N/µ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,S'v=M/µv,0,0,0,0,0,0,0,0)
and,

 Point 2: this is an endemic equilibrium point equal to:

(S',E'1,E'2,E'3,E'4,I'1,I'2,I'3,I'4,S'1,S'2,S'3,S'4,E'12,E'13,E'14,
 E'21,E'23,E'24,E'31,E'32,E'34,E'41,E'42,E'43,I'12,
I'13,I'14,I'21,I'23,I'24,I'31,I'32,I'34,I'41,I'42,I'43,
R',S'v,E'v1,E'v2,E'v3,E'v4, I'v1,I'v2,I'v3, I'v4 )

The  solution  is  found  with  the  same  mathematical
methodology published in [11], and does contribute anything
about new. The solution found is equal to:

S '
=

μ N 2

C2
                                        (11)

Ei
'
=

μ β N I vi
'

C1 C2

                                      (12)

Ii
'
=

β μ N σ I vi
'

C1 C2 C3

                                     (13)

S i
'
=

β γ μσ I vi
'

C1C 2C3 Di

                                  (14)

Eij
'
=

I vi
' β2 γ μσ I vj

'

C1
2C2C3 Di

                            (15)

Iij
'
=

I vi
' β2γ μ σ2 I vj

'

C1
2C2C3

2 Di

                            (16)

Sv
'
=

MN
C5

                                     (17)

Evi
'
=

M β v

C5 C6 [ I i
'
+ ρ∑

j=1
j ≠ i

4

I ij
' ]                       (18)

I vi
'
=

M σv βv

C4 C5C6 [ I i
'
+ ρ∑

j=1
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4

I ij
' ]                    (19)

In this case, the constants are:

C1 ≡ σ+μ

C2 ≡ μN+ β[∑
i=1

4

I vi
' ]

C3 ≡ μ+γ ;C4 ≡γ v+μv

C5 ≡ μv N+βv [∑i=1

4

I i
'
+ ρ∑

j=1
j ≠i

4

I ij
' ]

C6 ≡ σv+μv ,

D1 ≡
β
N

I v2
'
+

β
N

I v3
'
+

β
N

I v4
'
+ μ
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β
N

I v1
'
+

β
N

I v3
'
+

β
N

I v4
'
+ μ

D3 ≡
β
N
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'
+

β
N

I v2
'
+

β
N

I v4
'
+ μ

D4 ≡
β
N

I v1
'
+

β
N

I v2
'
+

β
N

I v3
'
+ μ

The most critical value in the epidemic model is the basic
reproduction value (R0) and is the resulting higher value of the
eigenvalues  of  the  Jacobian  of  the  47  differential  equations
when evaluated for each critical point (ie., Point 1 and Point 2);
the analysis is difficult  to perform and will published in the
future.

Finally, we will examine two cases of which the first results
from the consideration of a single strain and the second results
from the consideration of two strains. 

Model  1. Single-strain model  

In  the  case  of  a  single  strain  i=1,  so
S i

'
=0, Eij

'
=0, I ij

'
=0.  Therefore the solution is: 

5



Centro Nacional de Desarrollo e Investigación en Tecnologías Libres (CENDITEL)
Revista Electrónica Conocimiento Libre y Licenciamiento (CLIC) Mérida – Venezuela

ISSN: 2244-7423
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N
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β I v

'
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' ≡ E'
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μ N β I v

'

(σ+μ ) (μN+ β I v
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I1
' ≡ I '

=
β μ N σ I v

'

(σ+μ ) (μN+β I v
' ) ( μ+γ )

   

S v
'
=

MN

μv N+ βv I '      

Evi
' ≡ Ev

'
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M βv

(μv N+βv I ' ) ( σv+μv )
I '

    

I vi
' ≡ I v

'
=

M σv βv

(μv N+βv I ' ) (σ v+μv ) (γ v+μv )
I '

  

Model 2. Two-strains model.

In this case, the values i are 1 and 2 and the terms that are
not  zero  are  S',E'1,E'2,I'1,I'2,,S'1,S'2,E'12,E'21,I'12,I'21,R',S'v,E'v1,E'v2,

I'v1 and I'v2 whose equations are respectively: 

S '
=

μ N 2

D1
'

E1
'
=

μ β N I v1
'

(σ+μ ) (D 1
' )

  

   E2
'
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μ β N I v2
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' )
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'
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' )
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'
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μ σ β N I v2
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'
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'
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'  

E12
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'
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'
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'
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'
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I v2
' β2 γ N μ σ2 I v1

'
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'

Sv
'
=
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D3
'

Ev1
'
=

M βv (I 1+ I 12)

D3
' C4

 

 Ev2
'
=

M βv( I 2+I21)

D3
' C4

I v1
'
=

M σv βv( I 1+ I 12)

D3
' C4 C6

 

 I v2
'
=

M σv βv ( I 2+ I 21)

D3
' C4 C6

In this case, the constants are:

D1
' ≡(I v1

'
+ I v2

'
) β+μ N  

D3
' ≡ μv N +βv ( I 1+ I 2+ ρ( I12+ I 21))  

The constants C4 and C6 keep their original definitions.

Numerical simulations:  

In  Table  1  lists  the  numerical  values  are  listed  of  the
parameters  used  in  the  simulation  that  were  obtained  from
previous publication [11]. The time series plot is shown in Fig.
2(a) for the case of four strains for the time interval of 30 days.
The solution with two strains is shown in Fig. 2(b).  The results
of both simulations are very similar.  
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IV. CONCLUSIONS

We have developed an SEIR-SEI model of the transmission
dynamics of four-strains of dengue model considering primary
and secondary infections, which is an extension of the previous
model proposed in the literature but only only considering two
strains. We found that this model has two equilibrium points:
the disease free equilibrium (called Point 1) and Point 2 which
is the endemic equilibrium of the system.  It  is interesting to
indicate that the model that analyzing the epidemic with four
strains is very similar with to the model with two strains (Fig.
2), and therefore we conclude that it is unnecessary to perform
analytical  studies  with  four  strains  of  dengue,  since  it  is
sufficient to consider a solution with two different strains. 
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Fig. 2. The numerical solution of this model with (a) four strains, and (b) two
strains  according  to  Table  1  values.  S  represent  the  susceptible
population,  I  is  equal  to  the  sum of  I1+I2+I3+I4.   S1 is  the  humans

exposed  with  strain  1,  and  finally  Sv is  the  total  population  of

mosquitoes susceptible to any strains.

REFERENCES  
[1] I.  Kurane  and  T.  Takasaki,  “Dengue  fever  and  dengue  hemorrhagic

fever: challenges of controlling an enemy still at large,” Rev. Med. Virol.
Vol. 11, pp.  301-311 (2001).

[2] A. Seijo,  “El dengue como problema de salud pública,”  Arch. Argent
Pediatr., vol. 99, pp. 510-521 (2001).

[3] L. A. Hill, J. B. Davis, G. Hapgood, P. I. Whelan, G. A. Smith, S. A.
Ritchie, R. D. Cooper, and A.F. van den Hurk, “Rapid Identification of
Aedes  albopictus,  Aedes  scutellaris,  and  Aedes  aegypti  Life  Stages
Using  Real-time  Polymerase  Chain  Reaction  Assays,”  Am.  J.  Trop.
Med. Hyg., vol. 79(6), pp. 866–875  (2008).

[4] S.B.  Halstead,  “The  XXth  Century  dengue  pandemic:  need  for
surveillance and research,” World Health Stat Q, vol.  45, pp. 292-298
(1992).

[5] G.  Kourí,  M.G.  Guzmán,  J.  Bravo J,  “Hemorrhagic  dengue in Cuba:
history  of  an  epidemic,”  Bulletin  of  the  Pan  American  Health
Organization, vol. 20, pp. 24-30 (1986).

[6] H. S. Rodrigues, M. T. Monteiro, D. F. Torres, “Vaccination models and
optimal control strategies to dengue,” Math Biosci,  vol.  247, pp. 1-12
(2014).

[7] G. Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman,
“The  basic  reproduction  number  R0  and  effectiveness  of  reactive
interventions  during  dengue  epidemics:  the  2002  dengue  outbreak  in
Easter Island, Chile,”  Math Biosci Eng., vol. 10, pp. 1455-1474 (2013).

[8] M.  Canals,  C.  González,  A.  Canals,  D.  Figueroa,  “Dinámica
epidemiológica  del  dengue  en  Isla  de  Pascua,”  Rev.  chil.  Infectol.,
vol.29, pp. 388-394 (2012).

[9] M. Aguilar, B.W. Kooic, F. Rochaa, P. Ghaffari, N. Stollenwerk, “How
much  complexity  is  needed  to  describe  the  fluctuations  observed  in
dengue  hemorrhagic  fever  incidence  data?,”  Ecological  Complexity,
vol. 16, pp.  31–40 (2013).

[10] M. Chan, M.A. Johansson, “The Incubation Periods of Dengue Viruses,”
PLoS ONE, vol. 7(11), pp. E50972 (2012).

[11] S. Janreung and W. Chinviriyasit,  “Dengue Fever with Two Strains in
Thailand,” IJAPM., vol. 4, pp. 55-61 (2014).

[12] A. Korobeinikov, “Global Properties of SIR and SEIR Epidemic Models
with Multiple Parallel Infectious  Stages,”  Bull Math Biol., vol. 71, pp.
75–83 (2009).

TABLE 1. PARAMETERS OF THE SYSTEM OF DIFFERENTIAL EQUATIONS FOR THE MODEL

SEIR-SEI EPIDEMIC DENGUE MODEL

Variables Description Value

S Population  of  humans susceptible
of any strains

S(0) = 10

β infection  rate  of  the  disease  in
population

0.9

βv
infection  rate  of  the  disease  in
vector

1.0

Si Humans susceptible with strain i S1 = 1,S2=S3=S4=0

Ei Humans exposed with i strains All values are zero

Ii Humans infected with strain i I1 = 5, I2=I3=I4=0

Eij
Humans infected with strain i  but
susceptible to strain j

All values are zero

Iij
Humans infected with strain i and
reinfected with j strains 

All values are zero

Sij
Humans susceptible of strain j but
infected with strain i

All values are zero

Sv
Population  of  mosquitoes
susceptible to any strains

1

Evi Mosquitoes exposed with strain i All values are zero

Ivi Mosquitoes infected with strain i All values are zero
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